行业标准网
文库搜索
切换导航
文件分类
频道
仅15元无限下载
联系我们
问题反馈
文件分类
仅15元无限下载
联系我们
问题反馈
批量下载
(19)国家知识产权局 (12)发明 专利申请 (10)申请公布号 (43)申请公布日 (21)申请 号 202211110323.7 (22)申请日 2022.09.13 (66)本国优先权数据 202210366036.6 2022.04.08 CN (71)申请人 中国人民大 学 地址 100872 北京市海淀区中关村大街59 号 (72)发明人 赵鑫 王晓磊 (74)专利代理 机构 北京邦创至诚知识产权代理 事务所(普通 合伙) 11717 专利代理师 张宇锋 (51)Int.Cl. G06F 16/332(2019.01) G06F 16/33(2019.01) G06F 16/335(2019.01)G06F 16/36(2019.01) G06F 40/35(2020.01) G06N 20/00(2019.01) (54)发明名称 一种基于提示学习方法的对话推荐系统 (57)摘要 本发明公开了一种基于提示学习方法的对 话推荐系统, 包括如下步骤: S1: 通过基于实体预 测的自监督学习融合对话文本和知识图谱的语 义信息作为任务共享的提示, 为预训练语言模型 补充用于对话推荐系统所需要的知识信息; S2: 通过对话任务特定的提示设计, 驱动预训练语言 模型生成带有物品槽位的模板语句作为回复的 中间结果; S3: 通过推荐任务特定的提示, 驱动预 训练语言模 型生成用户感兴趣的物品。 本发明借 助知识图谱增强的提示学习技术, 在固定大规模 预训练语言模 型的情况下, 通过添加任务共享和 任务特定的提示, 使 得一个模型可以高质量地完 成对话和推荐两个任务, 并生 成结果相一致的回 复语句和推荐物品。 权利要求书2页 说明书8页 附图2页 CN 115525744 A 2022.12.27 CN 115525744 A 1.一种基于提 示学习方法的对话推荐系统, 其特 征在于, 包括如下步骤: S1: 通过自监督学习融合对话文本和知识图谱的语义信息作为任务共享的提示, 为预 训练模型补充用于对话推荐系统所需要的知识; S2: 通过对话任务特定的提示设计, 驱动预训练模型生成带有物品槽位的模板语句作 为回复的中间结果; S3: 通过推荐任务特定的提 示, 驱动预训练模型生成用户感兴趣的物品。 2.根据权利要求1所述的基于提示学习方法的对话推荐系统, 其特征在于, 步骤S1具体 为: 从对话文本 中抽取出单词和实体这两种基本的语义单元, 分别用于表征文本级别和物 品级别的知识, 并设计交叉融合机制和基于 自监督学习的预训练任务, 来融合这两种类型 的知识; 首先对单词和实体这两种语义单元进行编码; 对于单词, 采用基于双向Transformer的 预训练模 型RoBERTa作为编码器, 为了减少训练和存储开销, RoBERTa模 型的权重 保持固定, 每个单词的编码被拼接起来得到文本级别的表示 其中, 是单词i的 表示, nW是单词的数目; 对于实体, 采用实体链接技术将对话文本链接至知识图谱DBpedia, 通过关系图神经网络R ‑GCN进行编码得到每个实体的表示, 并将其拼接起来得到物品级别 的表示 其中, 是实体i的表示, nE是实体的数目; 得到上述两种级别的表示之后, 为了消除它们之间的语义鸿沟, 基于双线性变换的交 叉融合机制关联这两种语义单 元: 其中, A是这两种表示之间的相似性矩阵, 它通过引入变换矩阵W1得到, 和 分别对应 语义融合后的单词表示和实体表示; 为了学习上述过程引入的参数, 设计一个自监督任务, 让模型根据对话文本预测链接 出的实体中被去掉的部分, 其计算方法如下: 其中, e表示要预测的实体, 是添加了实体表示的对话上下文, 是模型经过编码得到的上下文表示, he是实体e 经过语义融合后得到的表示; 采用交叉熵损失函数来优化语义融合引入的参数Θfuse, Θplm保持固定, 无需优化。 3.根据权利要求1所述的基于提示学习方法的对话推荐系统, 其特征在于, 步骤S2具体 为: 对话任务旨在生成富有信 息量的语句来获取用户偏好或者给用户推荐感兴趣的物品; 通过在提 示中加强单词级别的语义信息, 使得回复语句与上 下文更加相关, 具体设计如下:权 利 要 求 书 1/2 页 2 CN 115525744 A 2其中, 是经过语义融合的文本表示, Pgen是对话任务特定的连续型提示, C是对话历史 文本; 在上述提示设计中, 优化Pgen的参数Θgen, 采用交叉熵作为损失函数, 具体计算过程如 下: 其中, N是训练样本的数目, li是第i个样本中回复语句的长度, w<j是回复中第j个位置 之前的所有单词。 4.根据权利要求3所述的基于提示学习方法的对话推荐系统, 其特征在于, 步骤S2还包 括: 对中间结果进行了共享; 具体为: 向预训练模型的词表中添加[ITEM]这一特殊单词作 为物品槽位, 并将训练样本的回复 中所有的物品都替换为[ITEM ], 预训练模 型在每个时间步将生 成[ITEM]或者是词表中的其 他单词; 推荐模块 生成的要推荐的物品将被用于填充这些槽位。 5.根据权利要求1所述的基于提示学习方法的对话推荐系统, 其特征在于, 步骤S3具体 为: 通过在提示中加强实体级别的语义信息, 使得推荐物品更好地满足用户需求, 具体设 计如下: 其中, 是经过语义融合的实体表示, Prec是推荐任务特定的连续型提示, C是对话历史 文本, S是对话模块 生成的带有物品槽位的推荐模板; 在上述提示设计中, 优化Prec的参数Θrec, 采用交叉熵作为损失函数, 具体计算过程如 下: 其中, I是训练样本的数目, M是物品的数目, yj,i为1代表物品i是第j个训练样本中推荐 的物品, Prj(n)的计算方式为: Prj(i)=Softmax(hu·hi) 其中, 是通过对 经过预训练模型编 码和池化操作得到的对话上 下文的表示, hi是物品i经 过语义融合得到的表示。权 利 要 求 书 2/2 页 3 CN 115525744 A 3
专利 一种基于提示学习方法的对话推荐系统
文档预览
中文文档
13 页
50 下载
1000 浏览
0 评论
309 收藏
3.0分
赞助2.5元下载(无需注册)
温馨提示:本文档共13页,可预览 3 页,如浏览全部内容或当前文档出现乱码,可开通会员下载原始文档
下载文档到电脑,方便使用
赞助2.5元下载
本文档由 人生无常 于
2024-03-17 23:38:41
上传分享
举报
下载
原文档
(972.0 KB)
分享
友情链接
GB-T 39600-2021 人造板及其制品甲醛释放量分级.pdf
GB-T 35263-2017 纺织品 接触瞬间凉感性能的检测和评价.pdf
NIST SP 800-61 R2 Computer Security Incident Handling Guide 英文版.pdf
T-CSA -TR008—2019 类太阳光LED术语定义及相关问题研究.pdf
阿里云 专有云敏捷版云原生PaaS场景 阿里云企业级容器平台AECP 产品文档 2021.pdf
GB-T 39637-2020 金属和合金的腐蚀 土壤环境腐蚀性分类.pdf
GB-T 24262-2009 石油物探仪器环境试验及可靠性要求.pdf
GM-T 0077-2019 银行核心信息系统密码应用技术要求.pdf
GB-T 41772-2022 信息技术 生物特征识别 人脸识别系统技术要求.pdf
GB 2017-1980 中波广播网覆盖技术.pdf
T-CI 038—2023 污泥脱水调理剂.pdf
GB-T 16632-2019 水处理剂阻垢性能的测定 碳酸钙沉积法.pdf
奇安信 数据泄露典型判例分析报告.pdf
GB-T 35625-2017 公共安全 业务连续性管理体系 业务影响分析指南(BIA).pdf
T-CITS 0012—2023 牛乳基婴幼儿配方乳粉及牛乳中A1和A2 β-酪蛋白的测定 液相色谱-串联质谱法.pdf
GB-T 21063.3-2007 政务信息资源目录体系 第3部分:核心元数据.pdf
SF-T 0008-2017 全国司法行政信息化总体技术规范.pdf
GB-T 42332-2023 海岛及周边海域地形图测绘规范.pdf
DB37-T 3234-2018 动物源食品中泰万菌素残留量的测定 液相色谱—串联质谱法 山东省.pdf
T-CEC 694—2022 变电站二次系统数字化设计编码规范.pdf
1
/
3
13
评价文档
赞助2.5元 点击下载(972.0 KB)
回到顶部
×
微信扫码支付
2.5
元 自动下载
官方客服微信:siduwenku
支付 完成后 如未跳转 点击这里 下载
站内资源均来自网友分享或网络收集整理,若无意中侵犯到您的权利,敬请联系我们
微信(点击查看客服)
,我们将及时删除相关资源。